Coverage Vs Integrity FormulaQuick notes:
My math may be wrong here, so feel free to correct me if i'm wrong.
I'm not that good at the game yet! I've only gotten to reaserch recently. So if anything I say dosent make sense for the late game, thats why.
In the game, how long an item is going to last (while in use) is decided by two variables:
Integrity is the amount of damage that part can take before it is destroyed
Coverage is the chance that item takes damage
Therefore, there is a tricky question that comes up on how to compare the "durability" of items that have inverse relations of integrity and coverage.
For example, take the Compact Whell vs the Wheel (the comparison that made me do this in the first place)
Wheel:
Integrity:40
Coverage:50
Compact Wheel:
Integrity:30
Coverage:30
The Wheel is more durable, AKA it can tank more damage, but the Compact Wheel has less coverage, AKA it is less likeley to take damage in the first place. So, how do we find out which will last longer?
Awnser: A lot of math.
So first off, because the odds of getting hit is proportional to the rest of the coverage on Cogmind, this measure assumes the rest of the coverage on Cogmind will stay the same. Of course, this isint really true. Other parts can break and lower your coverage drastically. But, if we assume that you are doing this calculation for an item you
dont want to break, we can assume you have spares or a good suply of those other items (or at least items of similar coverage). If you attach a new part that has drastically more or less coverage, you can just recalculate.
I'm going to name this new value "Expected Durability", as it represents how much damage you can expect to take before that item breaks:
Where C is combination (nCr, see:
https://en.wikipedia.org/wiki/Combination)
And L is a large number. The larger L is, the more accurate your reading of Expected Durability. L should allways be bigger then your durability. You can think of L as up to how much damage you are checking.
Here is an example to help:
Here, i've plotted the Expected Durability of Wheels(Black) and Compact Wheels(Red) for the rest of the coverage on Cogmind(c). Because our L is only 250 (due to the difficulty of plotting reapeated formulas), it is definetly only accurate up to c = 250, less if we want to be rigourous (I would guesstimate c = 200, but if you want to be strict, c = 100 works too) . The lower numbers of the plotting are still accurate enough though. I accidentally closed the window that had those plots, but I can at least say that somewhere between c = 70 and c = 80, compact wheels overtake wheels for expected durability. Therefore, if you have that much coverage, compact wheels are just better then wheels, period (as they have superior stats in mobility and support).